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BODIES OF MAXIMUM LIFT-TO-DRAG RATIO 

IN HYPERSONIC FLOW(+) 

ARTHUR H. LUSTY, Jr!f*) and ANGEL0 MIELE (* * "1 
bY 

SUMMARY 

The problem of maximizing the lift-to-drag ratio of a slender, flat-top body 

of semicircular cross  section in hypersonic flow is investigated with the indirect 

methods of the calculus of variations. The pressure distribution is assumed to  be 

modified Newtonian and a constant value of the skin-friction coefficient is employed. 

First ,  unconstrained configurations are considered, and it is found that the 

optimum body is a half-cone whose vertex angle is unique but whose size is undeter- 

mined. The scaling factor determining the size of the body can be found providing 

one geometric constraint is imposed on either the length, the thickness, o r  the volume. 

Next, configurations are considered upon which two geometric constraints a r e  
I 
I imposed, that is ,  given thickness and length, given volume and length, and given 
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volume and thickness. For each case, the lift-to-drag ratio parameter, the thickness 

ratio parameter, and the optimum shape are presented as functions of a single 

similarity parameter involving the two given quantities, the skin- friction coefficient ,’ 

and the constant modifying the Newtonian pressure distribution. 
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1. INTRODUCTION 

Currently, it is of interest to develop long range vehicles capable of cruising 

o r  gliding at hypersonic speeds and maneuverable vehicles capable of reentering the 

atmosphere (Refs. 1 and 2). In order to increase the range and the maneuverability, 

the vehicle should be designed with high aerodynamic efficiency, that is, high lift-to-drag 

ratio. Thus, we are presented with an optimization problem: that of maximizing the 

lift-to-drag ratio for various constraints imposed on the geometric dimensions. 

In this area of problems, previous studies were carried out in Refs. 3 and 4 

for the class of slender, flat-top, homothetic bodies. Direct methods were used, and 

the analysis was confined to the case where the longitudinal contour is represented 

by a power law. In this report, the above restriction is removed, and the indirect 

methods of the calculus of variations are employed in order to optimize bodies of 

arbitrary longitudinal contour. While the cross section is assumed to be semicircular, 

this restriction is by no means essential; the results of this report can be used to 

generate those valid for a body of arbitrary c ross  section by employing the similarity 

law of Ref. 5. 

The complete list of hypotheses is as follows: (a) a plane of symmetry exists 

between the left-hand and right-hand sides of the body; (b) the upper surface is flat; 

(c) the body is slender in  the longitudinal sense; (d) the transversal  contour is semi- 

circular; (e) the free-stream velocity is parallel to the line of intersection of the plane 

of symmetry and the plane of the flat top; (f) the pressure coefficient is proportional 

to  the cosine squared of the angle formed by the free-stream velocity and the normal 

to  each surface element; (g) the base drag is neglected; (h) the skin-friction coefficient 
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is constant and equal to  a suitably chosen average value; and (i) the contribution of 

the tangential forces to the lift is negligible with respect to the contribution of the 

normal forces. 
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FUNDAMENTAL EQUATIONS 

In order to relate the drag and the lift of a body to its geometry, we define the 

following cylindrical coordinate system Oxr8 (Fig. 1): the origin 0 is the apex of the 

body; x is a coordinate measured along the line of intersection of the plane of symmetry 

and the flat top, positive toward the base; r is the distance of any point from the axis of 

symmetry; and 8 measures the angular position of the vector r with respect to the plane 
+ 

of the flat top. 

If the hypotheses (a) through (i) are invoked and if the lower surface is represented 

by the relationship r = r(x), the drag D and the lift L per unit free-stream dynamic 

pressure q can be written a s  (Ref. 3) 

D/q = Jo L r[2mi 3 f (2 3. rr) Cf Idx 

where 6 denotes the length of the body, n a factor modifying the Newtonian pressure 

distribution(*), C the skin-friction coefficient, and ? the derivative dr/c€x. As a 
f 

consequence, the lift-to-drag ratio is given by 

where 

K 5 (2 -F n) Cf/2nn 

- 

2 (”) The pressure coefficient employed in Eqs . (1) is C = 2ni- . 
P 
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This lift-to-drag ratio is to be maximized subject t o  the isoperimetric constraint of 

given volume 

(4) 

and the inequality constraint 

which expresses the limit of validity of the Newtonian pressure law. 

One way to account for Ineq. (5) is to  transform it into an equality constraint by 

introducing an appropriate auxiliary variable. If this is done, subarcs = 0 are likely 

to appear in the optimum contour. From previous experience (see Chapter 14 of Ref. 6), 

it is known that these subarcs start  at the initial point and terminate at the final point. 

Therefore, an alternate way to account for Ineq. ( 5 )  is to  investigate the class of bodies 

preceded by a spike and followed by a cylinder and, therefore, defined by (Fig. 2) 

9 9 O < X l X  i 
r = r .  = O  

1 
i - = O  

9 9 f 
x. < x  < x  

f 1 
r. < r < r  
1 

2 2 0  

9 t x C X S 4  f 
r = r  = t  

f i - = O  

where the initial abscissa x the final abscissa x 
i' f' the length &, and the thickness t 

may be either prescribed o r  free. If this point of view is taken, the variational 

problem reduces to that of maximizing the expression 

r"f .2  
rr dx 

J X i  I-rL - 
2D 
- -  Jzf r(r3 + K) dx + Kt(4 - xf) 

1 

(7) 



18 . 

I 
1 
I 
1 

7 

subject to the isoperimetric constraint 

and certain prescribed boundary conditions. 
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3. NECESSARY CONDITIONS 

According t o  Ref.  7, the proposed problem is equivalent to that of maximizing 

the functional 

fxc 

(9) 

With respect to the functions r(x) and the parameters and t satisfying the isoperimetric 

constraint (8) and the prescribed boundary conditions. In Eq. (9), the functions F and G 

are defined as 

.2 3 2 F = rr - Er(? +K) + X r  

2 G = -  E K t ( t - x ) + X t  ( 8 - x f )  f 

where 

is a multiplier proportional t o  the unknown maximum lift-to-drag ratio and X is a multiplier 

associated with the volume constraint. Both E and X are constant during the optimization 

process. 

Euler Equation. According to standard variational procedures (see, for instance, 

Chapter 1 of Ref. 6), the optimum shape must satisfy the Euler equation 

dF. /dx - F = 0 r r 
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which admits the first integral 

F - rF. = C  (13) r 

since the fundamental function (10- 1) does not contain the independent variable explicitly. 
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o n  The explicit form of Eq. (13) is given by 

. 3  .2 2 
(2Er - r - E K ) r + h r  = C  

1 Transversality Condition. The integration constants that appear in the solution 

of the Euler equation must be determined from the transversality condition 

- C6x. + (C - A t  2 + EKt) 6xf + (At2 - EKt) 66 
1 

+ [t'+2 - 3E?f) +(2ht - EK)(G- x 16t = 0 3 
which for the four classes of solutions, 

x .=O , r = O  
i 9 

1 
Class I: 

Class 11: x i > O  , r. = O  9 
1 

x . = O  , r . = O  9 

1 1 
Class 111: 

X. > O  , r. = O  7 

1 1 
Class IV: 

yields the following natural boundary conditions : 

x = G ,  r = t  

x = G ,  r = t  

x <& , r = t  

x < G ,  r = t  

f f 

f f 

f f 

f f 

f 
[Cbx+F;br ] i+6G=0 

which must be satisfied identically for every set of variations consistent with the 

prescribed end conditions. Since 6 r .  = 0 and 6r  = dt, the explicit form of Eq. (15) is 

I 
I 

1 f 

1 given by 

~I 
IN 
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x. free: c = o  
1 

x =free: 
f 

& = free: 

x = & = f r e e :  f 

2 C - ht  

2 

+ EKt = 0 

A t  - EKt = O  

c = o  

t free: t? (2 - 3E? ) + (2Xt - EK)(G - xf)  = 0 f f 

Legendre Condition. In order to insure that the solutions of the Euler equation 

are optimal with respect to weak variations in the slope, it is necessary that the 

Legendre condition 

F. .  S O  rr 

Am- 22 

be satisfied. Its explicit form is given by 

Weierstrass Condition. If strong variations in the slope are considered, the 

Legendre condition is to be replaced by the Weierstrass condition 

F(r,? ,E,X) - F(r,?,E,X) - F,(r ,? ,E,h)(?  - ? ) S O  
C r C 

where r and ? are  the ordinate and the slope of the extrema1 a r c  and 2 is the slope of 
C 

the comparison arc.  The explicit form of this inequality 

2 r(? - ?) (1 - 2E? - E? ) 0 
C C 

is satisfied for every choice of the comparison slope consistent with the constraint (5) 

providing 

? 2 1/2E 

As expected, the Weierstrass condition is more restrictive than the Legendre condition, 
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and the nondimensional quantities 

~ 
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4 .  NONDIMENSIONAL EQUATIONS 

Before analyzing particular cases, it is convenient to introduce the nondimensional 

coordinates 

E, = EK1I3= (n/2)(L/D)K 113 

- 1/3 
T, = TK -'I3 = (t/&)K 

-2/3 X, = 1 t K  

C, = (C/t)K -2/3 

V, = (2V/n4 3 )K -2/3 

3 1/3 V = (2V/nt )K 
0 

where T is the thickness ratio. With the aid of these definitions, Eqs . (7) and (8) can 

4f 
be rewritten as 

pP(b)d5 + E, (1 - ?J = 0 
i 

where 
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and where b denotes the derivative dp/dF. The first integral (14) becomes 

(28) 
2 

X,P + Q(b)p - C, = 0 

where 

(2 9) 

and 

b 5 1/2E,1-, 

owing to  the Weierstrass condition (23). Finally, the boundary conditions (17) and (18) 

become 

Class I: 

Class 11: 

Class 111: 

Class IV: 

and 

x. free: 
1 

x free: 
f 

& free: 

x =&-free :  f 

t = free: 

F 2 i = o  , p . = o  1 * 5 , = 1 ,  P f = l  

y o  9 P i = o  , t f = l ,  P f = l  

E . = O  , p = o  1 I F f < l ,  P f = l  

y - 0  I p i = 0  I C f < l  I P f = J  

1 

c,: = 0 
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5. PARTICULAR CASES 

With the aid of expressions (26) through (32), the following particular cases 

are analyzed: (a) unconstrained configuration; (b) given thickness and length; (c) given 

volume and length; and (d) given volume and thickness. For each particular case, we 

first determine the solutions of Class I; then, if more solutions are needed, we investi- 

gate those of Class 11, Class 111, and Class IV. For problems where the length is free,  

the following concept is relevant: one may add a spike of zero thickness to each extremal 

solution of Class I and generate an infinite number of solutions of Class 11 having the 

same lift-to-drag ratio; analogously, one may add a spike of zero thickness to each 

extremal solution of Class III and generate an infinite number of solutions of Class IV 

having the same lift-to-drag ratio. merefore,  if the length is free, only solutions 

of Class I and Class III shall be analyzed. 
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6.  - UNCONSTRAINED CONFIGURATION 

If the length, the thickness, and the volume are free, the analysis shows that 

the extrema1 solution is of Class I and is governed by the first integral (28) which must 

be solved in conjunction with the condition X, = 0 and the boundary conditions (31- l ) ,  

(32-4), and (32-5). Therefore, Eq. (28) reduces to 

which implies that 

1 b = C  

and, upon integration, that 

2 0 = CIE + c 

Because of Eqs . (31- l), the constants in Eq. ( 3 5 )  take the values 

c = o  2 c = 1  , 1 

s o  that 

(3 7) p = E  

meaning that the optimum flat-top body is a semicone. The lift-to-drag ratio parameter 

and the thickness ratio parameter are given by 

E, = %/3 9 7, = :/i- 

as can be Seen by employing Eqs. (31-1), (32-5), (33), and (37). 

(33) 

(34) 

(3 5) 
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Notice that the geometry of the optimum body is completely determined in the 

E D -  coordinate system but depends on a scaling factor in the xr-coordinate system. 

Therefore, there exist an infinite number of bodies having the lift-to-drag ratio 

parameter (38- 1) .  However, if one geometric quantity is specified (the length, the 

thickness, o r  the volume), the optimum body becomes unique. Should two or three 

geometric quantities be simultaneously specified, the geometry of the optimum body 

would generally change, and a loss in the lift-to-drag ratio parameter would occur 

with respect to that predicted by FQ. (38- 1). 

AAR- 22 
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7 .  GIVEN THICKNESS AND LENGTH 

If the thickness and the length are given while the volume is free, the extrema1 

solution is governed by the first  integral (28) which must be solved in conjunction with 

the condition X, = 0 and the boundary conditions (31) and (32). This first integral can 

be rewritten as 

and its solutions are of Class I o r  Class I1 depending on the value of the thickness ratio 

parameter T, , a known quantity. 

Solutions of Class I. These solutions occur for C,> > 0 and are characterized by 

the fact that the optimum body behaves as a 3/4-power body near the axis of symmetry 

so that 6 = m . By applying Eq. (39) at the final point, we see that 
i 

C, = Q(6,) 

and, as a consequence, 

0 = Q(bf) /Q(b)  

Next, we observe that d4 = dp/b and, upon integration, we obtain the relationship 

03 

4 = Q(6,) s. P [Q1(b)/bQ2(b) Id; (42) 

(Q' denotes the derivative dQ/db), which- -together with Eq. (41)--describes the optimum 

shape in  parametric form. The lift-to-drag ratio parameter E,: and the final slope b 

are unknown and must be determined in terms of the thickness ratio parameter T$  . 
f 
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To do so, we apply Eq. (42) at the final point to obtain the relationship 

Also, we combine Eqs. (26-1), (41), and (42) and deduce that 

Since the functions P and Q contain the quantities E, and 7, , the relations (43) and (44) 

define the functions 

.r 

implicitly. As a consequence, the parametric equations of the optimum shape (41) and 

(42) become 

and, upon elimination of b, allow us  to describe the extrema1 solution in the form 

Equations (45- 1) and (47) have been evaluated numerically and are valid providing 

(Figs. 3 and 4) 

Solutions of Class 11. These solutions occur for C, = 0 and are characterized by 

the fact that the initial slope is finite. Since the first integral (39) is solved by 
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Eqs . (34) and (35) hold providing 

AAR - 22 B 

Clearly, these solutions include a spike of zero thickness followed by a semicone 

described by 

i' In order t o  determine the lift-to-drag ratio parameter E, and the initial abscissa S 

Eq. (51) must be combined with Eqs. (26-1) and (49) to yield the relationships 

3-  ' 4.  = 1 - I-,/ A D  
1 

E, = $ 4 / 3  

Therefore, upon elimination of 5 .  from Eqs. (51) and (52-2), the optimum shape can be 
1 

rewritten as 

Equations (52- 1) and (53) are plotted in Figs. 3 and 4 and are valid providing 

3- 
T,< d 2  (54) 
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8. GIVEN VOLUME AND LENGTH 

If the volume and the length a r e  given while the thickness is free, the extremal 

solution is governed by the first integral (28) which must be solved in conjunction with 

the isoperimetric constraint (26-2) and the boundary conditions (31) and (32). The 

analysis shows that the solutions of Eq. (28) are of Class I o r  Class I1 depending on the 

value of the volume-length parameter V, , a known quantity. 

Solutions of Class I. These solutions occur for C, > O ,  X, > 0 and are characterized 

by the fact that the optimum body behaves as  a 3/4-power body near the axis of symmetry 

so that F; = a. If the first integral (28) is regarded to be an  algebraic equation of the 
i 

second degree in p, the only relevant solution is given by 

where 

= - Q<b> +JQ%) + 

and c = 4C,X, . By applying Eq. (55) at the final point, we see that 

2X, = R(E, ) f 

and, as a consequence, 

Next, we observe that dS = d p / i  and, upon integration, we obtain the relationship 

(57) 
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(R' denotes the derivative dR/db), which- -together with Eq, (58)- -describes the optimum 

shape in parametric form. The lift-to-drag ratio parameter E,, the thickness ratio 

parameter T:: , the final slope b 

in te rms  of the volume-length parameter V, . To do so ,  we apply Eq. (59) at the final 

point to obtain the relationship 

1 
I 

and the constant 8 are unknown and must be determined f '  

n 

R(bf) - luf (l/b)R'(b)db = O  
m I 

I Also, we combine Eqs .  (26), (58), and (59) and deduce that 

Finally, we rewrite the boundary condition (32-5) in the following form: 

3E,.r,bf - 2 = 0 

Since the functions P and R contain the quantities E,, T,, and 8 ,  the relations (60) through (62) 1) 
define the functions 

I I implicitly. As a consequence, the parametric equations of the optimum shape (58) and 

(59) become 

P = f5(6* V,) , 4 = f6(P, V,:) 
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and, upon elimination of p ,  allow us to describe the extrema1 solution in the form 

Equations (63-l), (63-2), and (65) have been evaluated numerically and a re  valid 

providing (Figs. 5 throu& 7) 

v, > $z /3 (66) 

Solutions of Class II. These solutions occur for C, = 1, = 0 and are characterized 

by the fact that the initial slope is finite. Once more, the first integral (28) is solved by 

s o  that Eqs. (34), (35), (SO), and (51) hold. In order to  determine the lift-to-drag ratio 

parameter E,, the thickness ratio parameter T,, and the initial abscissa 5 

must be combined with Eqs . (26) and (67) to yield the relationships 

E q .  (51) i’ 

7, = (3 75 V,) 1 /3 

3-  1/3 4.  = 1 - (3V*/J4)  
1 

Therefore, upon elimination of 4 .  from Eqs. (51) and (68-3), the optimum shape can be 
1 

rewritten as 

Equations (68- l), (68-2), and (69) a r e  plotted in Figs. 5 through 7 and a r e  valid providing 

v, ?z /3 
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9.  GIVEN VOLUME AND THICKNESS 

If the volume and the thickness are given while the length is free, the extrema1 

solution is governed by the first  integral (28) which must be solved in  conjunction with 

the isoperimetric constraint (26-2) and the boundary conditions (31) and (32). The 

analysis shows that the solutions of Eq. (28) are of Class I o r  Class III depending on 

the value of the volume-thickness parameter V , a known quantity. 
0 

Solutions of Class I .  For these solutions, which are characterized by C, = 0 

and X, 5 E,, the first integral (28) reduces to 

By applying this equation at the end points, we see that the initial and final slopes 

satisfy the relationships 

s o  that 

P =  

Next, we observe that d4 = dp/p and, upon integration, we obtain the relation 

(73) 

P 

e = [l/Q(Of)l ( l / b ) Q ' ( b ) d b  (74) 
'i 

which- -together with Eq. (73)- -describes the optimum shape in parametric form. The 

lift-to-drag ratio parameter E,, the thickness ratio parameter T,, the initial slope I j  , 

and the final slope b are unknown and must be determined in  terms of the volume-thickness 

parameter V . T o  do so, we apply Eq. (74) at the final point to oktain the relationship 

i 

f 

0 
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Also, we combine Eqs. (26), (73), and (74) and deduce that 

Since the functions P and Q contain E, and T,, the relations (72-l), ('is), and (76) 

define the functions 

E, = fl(Vo) , T* = f (V ) , bi = f (V ) , if = f (V ) 
2 0  3 0  4 0  

AAR- 22 

implicitly. As a consequence, the parametric equations of the optimum shape (73) and 

(74) become 

and, upon elimination of O, allow us to describe the extrema1 solution in  the form 

Equations (77- l ) ,  (77-2), and (79) have been evaluated analytically and are valid providing 

(Figs. 8, 9, and 11) 

V s0 .313  
0 
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As Fig. 11 shows, the optimum shape is slightly concave for V <0.265, is conical 

0 

for V = 0.265, and is slightly convex for  0.265 < V 5 0.313. 
0 0 

Solutions of Class 111. For these solutions, which are characterized by C, = 0 

and A, = E, , the shape equations (73) and (74) are still valid. The lift-to-drag ratio 

parameter E, , the thickness ratio parameter 7 ,  , the initial slope p , the final slope 

and the transition abscissa 4 can be determined in  t e rms  of the volume-thickness 

i 

O f  f 

parameter V by solving the relationships 
0 

Q(b,) = 0 

I 

bf 
E,( 1 - Ef) Q2(6,) + 1. ( 1 / b )  P(b) Q(b) Q'(b> db = 0 

(Vo~.+ - 1 + Yf )Q3(bf) - s. (l/b)Q2(b) Q'(b)db = 0 

'i . 
pf 

'i 

which admit solutions of the form (77) and 

E f = f  8 0  ( V )  (82) 

Once more, the optimum shape is described by equations of the form (78) which, upon 

elimination of 6, yield the functional relation (79). Equations (77-l), (77-2), (82), and 

(79) have been evaluated analytically and are valid providing (Figs. 8 through 11) 

V 2 0.313 (83) 
0 

~~~~~~~~ ~ 
~~ ~ ~ 
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10. DISCUSSION AND CONCLUSIONS 

In the previous sections, the problem of maximizing the hypersonic lift-to-drag 

ratio of a slender, flat-top body of semicircular cross  section is investigated with the 

indirect methods of the calculus of variations. The pressure distribution is assumed 

to be modified Newtonian and a constant value of the skin-friction coefficient is employed. 

The main conclusions of the analysis are  as follows: 

(a) The optimum unconstrained configuration is a semicone having a lift-to-drag 

ratio parameter E, = 0.529, a thickness ratio parameter 7, = 1.26, a volume-length 

parameter V, = 0.529, and a volume-thickness parameter V = 0.265. For n = 1 and 

-3  3 
C = 10 , these quantities correspond to L/D = 3.6,  t / t  = 0.118, V / t  = 0.00727, 

3 and V/t = 4.44. However, the size of the semicone is undetermined. 

0 

f 

(b) If either the length, the thickness, o r  the volume is prescribed, the aero- 

dynamic and geometric characteristics a r e  identical with those of case (a), but the size 

of the optimum body is uniquely determined. 

(c) If the thickness and the length a r e  given, two solutions are possible depending 

on the value of the thickness ratio parameter. For T, 2 1.26, the optimum body consists 

of a spike followed by the semicone of case (a). For T, > 1.26, the optimum body is 

convex, it behaves as a 3/4-power body in  the neighborhood of the axis of symmetry and, 

therefore, has an infinite slope at the nose. 

(d) If the volume and the length are given, two solutions are possible depending on 

the value of the volume-length parameter. For V, 

of a spike followed by the semicone of case (a). For V, > 0.529, the optimum body is 

convex, it behaves as a 3/4-power body in  the neighborhood of the axis of symmetry 

0.529, the optimum body consists 
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and, therefore, has an  infinite slope at the nose. 

(e> lf the yc!upLe a& the th i chess  are gi~cfi, three s~ki t ;acs  are p ~ s ~ i b k  d ~ p ~ ~ ~ d i i i g  

on the value of the volume-thickness parameter. For V I 0.265, the optimum body is 

slightly concave. For 0.265 S V S 0 . 3  13, the optimum body is slightly convex. 

for V 2 0 . 3  13, the optimum body is composed of a convex portion followed by a cylindrical 

portion. Regardless of the value of V , all of the solutions have a sharp nose. 

0 

Finally, 
0 

0 

0 

In closing, the following comments are in order: 

( f )  If the similarity law of Ref. 5 is invoked, the solutions of this report can be 

employed in order to generate those valid for a cross-sectional shape other than semi- 

circular. If this is done, the lift-to-drag ratio of the unconstrained configuration can 

be improved by 

cross section, and 

2% using the best elliptical cross  section, 12.5% using the best sinusoidal 

47% using the best triangular cross section (Ref. 3). 

(g) Since the present optimum bodies are convex o r  only slightly concave, we 

feel that the use of the Newtonian pressure law is justified. 

(h) While this analysis neglects the dependence of the skin-friction coefficient 

on the body shape during the optimization process, this point of view is justified in 

the light of the results of Ref. 8 .  
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